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Photons are carriers of the electromagnetic force and propagate the electrostatic and magnetic vector potentials. While 
the electrostatic potential (�) is agreed to be related to the work needed to move a unit charge in an electrostatic field, the 
meaning of the magnetic vector potential (��) has been enigmatic. Here I show that the product of the time derivative of the 
magnetic vector potential and the charge (��) of a moving particle can be considered to be the electromagnetic analog of the 
optomechanical Doppler force that prevents charged particles from accelerating beyond the speed of light. As the velocity of 
a charged particle approaches the speed of light, the time rate of change of the magnetic vector potential increases and 
produces a self-induced electrodynamical field that opposes the electrostatic field that accelerates the charged particle. 
Although magnetism is generally considered to be a relativistic aspect of electricity, here I show that by taking the magnetic 
vector potential into consideration, one can understand the electrodynamics of moving bodies in terms of real and absolute 
time. 
 
 
 

1.     Introduction 

The Doppler Effect is readily perceived when there 
is relative motion.  Curiously, standard textbooks 
rarely, if ever, include the Doppler effect as a 
primary consideration in the study and description 
of relative motion. My work incorporates the 
Doppler Effect from the beginning. When 
expanded to second order, its inclusion makes it 
possible to unify many aspects of mechanics and 
electrodynamics that are usually treated separately. 

In previous papers [1,2], I developed a second 
order relativistic wave equation that describes the 
propagation of light waves between inertial frames 
moving relative to each other at velocity (�). This 
relativistic wave equation, which differs from 
Maxwell's by including the Doppler effect a priori, 
is given by:  
 ��	�
� = ��’ 	√��	� ��� �√�	�	� ��� � ���					             (1) 

 
or	
 ��	�
� = ��’	 ��	�� ������	�	�� � !� "��

���              (2) 

	
Where, � represents any of the scalar or vectorial 
electromagnetic fields or potentials, � is the magni- 
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tude of the velocity and # is the angle between the 
velocity of a particle and the velocity of a photon. # = 0 radians when the movements of a photon and 
a particle are parallel and # = 	$ radians when the 
movements of a photon and a particle are 
antiparallel. At � = 0, this relativistic wave 
equation reduces to Maxwell's wave equation. 

The absolute and relative aspects of the 
photon's speed are represented by c and �%, 
respectively. The parameter c is equal to the square 
root of the reciprocal of the product of the electric 
permittivity (&') and the magnetic permeability 
((') of the vacuum as given by Maxwell's relation. 
On the other hand, �%, which depends on the 
relative velocity of the source and observer, gives 
the ratio of the angular frequency ()*'+,�-) of the 
source in its inertial frame to the angular wave 
number (.'/*-,�-,) observed in any inertial frame. 
At any relative velocity between the source and the 
observer: 
 �% ��	�� ������	�	�� � !�"��

= �	 = 2.99 × 108 m/s          (3) 

 

Substitution of �% with 
sourceω

observerk
 gives a relativistic 

dispersion relation that characterizes the Doppler 
effect: 
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)'/*-,�-,		 = �.'/*-,�-, = 	)*'+,�-		 ��		�� ������	�	�� � !� "��
 (4) 

 
or .'/*-,�-,		 =	.*'+,�-		 ��		�� ������	�	�� � !� "��

         (5) 

 
that must be satisfied when the general plane wave 
solution has the form:  
 

� =	�'�
0
1
2345�6789:�9:∙	,	555��<86=:�9		 >?		�� � !"

@>	?	�� � !� "��
	

A
BC	

    (6) 
 

I used the second order relativistic wave 
equation given above to model the interaction 
between a moving charged particle and the photon 
gas through which it moves [1]. As a result, I 
interpreted the observations that particles with a 
charge cannot exceed the vacuum speed of light 
because such particles interact asymmetrically with 
the photon gas that makes up the environment 
through which the particles move. 

The spatially asymmetrical interaction between 
a moving particle and the photons results in a 
temperature- and velocity-dependent, self-induced 
counterforce because the photons that collide with 
the front of the moving particle are blue-shifted and 
thus have more linear momentum than the photons 
that collide with the back of the moving particle, 
which are red-shifted as a result of the Doppler 
effect (Fig. 1). Consequently, the optomechanical 
Doppler force acts asymmetrically and is directed 
antiparallel to the velocity of the particle [1]. A 
photon gas is present at all temperatures greater 
than absolute zero [3], and, according to the Third 
Law of Thermodynamics, absolute zero is 
unattainable [4]. I conclude that the 
optomechanical Doppler force, which is a contact 
force, is a ubiquitous and ever present force on 
moving particles with a charge. Furthermore, the 
optomechanical Doppler effect has increasing 
significance as the velocity of the particle 
approaches the speed of light. 

 
Fig.1: The individual momentum vectors that represent 
the transfer of momentum from the photon gas to a) a 
positively-charged particle moving in an electric field 
towards the left and b) a negatively-charged particle 
moving towards the right. The net momentum vector 
represents the transfer of momentum from the photon gas 
to the c) positively-charged and d) negatively-charged 
particle as a result of the optomechanical Doppler force. 
The length of the net vector increases as the velocity 
increases. 

2.     Results and Discussion 

The optomechanical Doppler force is an induced 
force that is catalyzed by a charged particle moving 
through a photon gas. In the presence of an applied 
force, the optomechanical counterforce prevents 
the velocity of such a particle from exceeding the 
speed of light. After the removal of the applied 
force, the optomechanical counterforce causes the 
particle to decelerate [1,5]. Being an induced force, 
the optomechanical Doppler force cannot exist in 
free space in the absence of a moving particle. 
Given that a particle must be charged in order to 
interact with the photon gas through which it 
moves, I will specifically discuss the electrostatic 
force as the applied force used to accelerate a 
charged particle. An applied electric field provides 
an electrostatic force that can be used to accelerate 
a particle with charge �� according to the following 
equation: 
 D�EFFG0-H = ��I5�EFFG0-H                 (7) 
 
Where, I5�EFFG0-H  is the applied electric field (in 

V/m), D�EFFG0-H represents the constant applied 
electrostatic force, � is the elementary charge (1.6 
× 10-19 C) and � is the valence of the particle. When 
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one takes into consideration the opposition to the 
movement of the charged particle by the 
optomechanical Doppler force [1], Newton's 
Second Law becomes: 
 D�EFFG0-H +	D�K'FFG-, = 	D�-LL-�
0�- = 	M' H�5�H
     (8) 

 
Where, D�K'FFG-, represents the optomechanical 

Doppler force [1] antiparallel to D�EFFG0-H and D�-LL-�
0�- represents the effective force that 
accelerates the charged particle with an 
acceleration that is less than the acceleration that 
would be caused by D�EFFG0-H alone. The 
optomechanical Doppler force can be interpreted to 
produce an electric field across the moving particle 
with a polarity that opposes the applied electric 
field, thereby reducing the applied electric field to 
an effective electric field (I5�-LL-�
0�-) in the vicinity 
of the extended charged particle according to the 
following equation: 
 D�-LL-�
0�- = 	��I5�-LL-�
0�- 
 = ��NI5�EFFG0-H +	I5�K'FFG-,O										(9) 
 
Where, I5�K'FFG-, can be measured as the difference 
between the effective electric field and the applied 
electric field at various temperatures.  

As shown in previous papers [1,6], the 
optomechanical Doppler force is given by: 
 

D�K'FFG-, =	 HPH
 	 Q�R6 	�55����	�	����
                (10) 

 
Where, S' is the peak wavelength of a photon gas 
with a blackbody distribution that depends only on 
the absolute temperature 	T, h is Planck's constant, 

and 
QR6 is the momentum of a photon with the peak 

wavelength. The collision rate between a charged 
particle with constant mass (M') moving at speed 
(�) and the photons that make up the photon gas 

through which it moves is given by 
HPH
 . The 

collision rate is the product of the photon density 
(U), the cross sectional area [1, 6-9] of the photons 

(σ = 	 R��W), and the speed of the particle. c is the 

speed of light in a vacuum and XY, in the 
derivative, is an invariant duration of time. By 
defining the product of U and σ as the linear photon 

density (UZ), replacing h with 
-�[6�\ using the 

definition of the fine structure constant (]), 

substituting (' for 
�[6��, and replacing  S' with  _̂  

using Wien's displacement law, we get: 
 D�K'FFG-, =		 `a_-�b6�^\ 	��

��	�	����
                 (11) 

 
This expression of the optomechanical Doppler 

force shows explicitly that the counterforce 
depends on the temperature of the photon gas as 
well as electrodynamic properties, including the 
velocity of the moving particle, the square of the 
charge of the moving particle, the magnetic 
permeability of the vacuum, and the strength of the 
interaction between a charged particle and a 
photon, which is given by the fine structure 
constant [1]. The counterforce that resists the 
acceleration of the particle vanishes when the 
temperature of the photon gas vanishes, or when 
the charge and/or the velocity of the particle goes 
to zero.  

Since the linear photon density (UZ, in m-1) is 
solely a function of temperature, it can be written 

as 
cd^e
WQ�� T, where fg is the Stefan-Boltzmann 

constant (5.6704 × 10-8 J m-2 s-1 K-4) and h is the 
Wien constant (2.89784 × 10-3 m K).  By 
combining the constants [1], the optomechanical 
Doppler force experienced by a univalent particle, 
where  � = 	±1, can be expressed exclusively in 
terms of temperature and velocity: 
 D�K'FFG-, =	−lm2.82	 × 	10�st	u	l�	v��	w��xT� 	��

��	�	����
     (12) 

 
Where l = 1, when the absorbed photons are re-
emitted or scattered isotropically and l = 2, when 
the absorbed photons are re-emitted or reflected in 
the same direction in which they were absorbed [1]. 
Taking into consideration the counterforce 
provided by the optomechanical Doppler force, 
Newton's Second Law for a univalent particle can 
then be written like so: 
 D�-LL-�
0�- = D�EFFG0-H 	− lyT� 	��

��	�	����
=	M' H�5�H
   (13) 

 
Where, y = 	2.82	 × 	10�st	u	l�	v��	w��	 and 

the time rate of change of momentum 
HF�H
  is then 

given by: 
 D�-LL-�
0�- = D�EFFG0-H + D�K'FFG-, = 	 HF�H
        (14) 
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Where, z� = M'��	 represents the momentum of a 
univalent particle moving through a vacuum at 
temperature (T). M' indicates a constant and 
invariant quantity of matter that makes up a body 
[10], and	Xz� indicates the product of a constant and 
invariant quantity of matter and its change in 
velocity [11]. In the absence of the velocity-
dependent optomechanical Doppler force, the time 
rate of change of momentum would be linear with 
respect to the applied force and Eqn. (14) would 
reduce to Newton's Second Law. The nonlinear 
relationship between the applied force and the time 

rate of change of the apparent momentum (
HF�%H
 ) is 

typically explained by considering the factors that 
make up the time rate of change of the apparent 
momentum such as M or Y to be velocity-dependent 
variables. 
 D�EFFG0-H = HF�H
 −	D�K'FFG-, =	 HF�%H
            (15) 

 

2.1.     Interpretations of apparent momentum 

While I interpret the difference between the 
temporal derivative of the apparent momentum (z�′) 
and the temporal derivative of the momentum (z�) 
to be a result of the optomechanical Doppler force, 
historically, the difference has been attributed to 
the relativity of mass that resulted from the self-
induced magnetic effects produced by a moving 
charge [12]. As a result, the apparent momentum 
has been interpreted to be equal to |M + 	}M~��, 
where M + 	}M is the apparent mass and }M is the 
electromagnetic mass or the hydrodynamical mass, 
terms coined by Walter Kaufmann [13] and Charles 
Galton Darwin [14], respectively, to indicate the 
apparent electromagnetic or hydrodynamical 
increase in the mass of a particle as it moved 
through the luminous aether or any viscous 
medium. Wilhelm Wien championed the complete 
replacement of the Newtonian mechanical world 
view with the electromagnetic world view and 
considered the mass of a charged particle to be 
exclusively due to }M, where }M was a 
consequence of self-induction. Max Abraham and 
Hendrik Lorentz each constructed a geometrical 
model of the electron that would use 
electrodynamics to explain the self-induced change 
in mass with velocity. While Abraham’s rigid 
sphere model appeared to be confirmed in 1903 by 
Walter Kaufmann's experiments on the relationship 
between mass and velocity, later experiments 
supported Lorentz's contractile model of the 
electron [15-19].  

The apparent variation of the mass of moving 
bodies was later explained by the Special Theory of 
Relativity [20]. According to the Special Theory of 
Relativity, the difference between the temporal 
derivative of the apparent momentum and the 
temporal derivative of the momentum is due to the 
relativity of time between two different inertial 
frames and is independent of the size, structure, 
and charge of the electron [21]. I claim that the 
interpretations of relative mass or relative time are 
a consequence of neglecting the environment 
through which the charged particle with constant 
and invariant mass moves [1,2,5,6,22]. Unless one 
denies the presence of the black body radiation that 
exists as long as T > 0, and the ubiquitous Doppler 
effect, the optomechanical Doppler force must by 
necessity provide a resistance to acceleration. The 
optomechanical Doppler effect may also account 
for the electromagnetic phenomena that depend on 
the relative motion of a conductor and a magnet—
the very phenomena whose apparent asymmetry 
was resolved by Einstein with the Special Theory 
of Relativity in terms of the relativity of time after 
he noticed asymmetries in Maxwell's 
electrodynamics that did “not seem to attach to the 
phenomena'” when it came to “the electrodynamic 
interaction between a magnet and a conductor” 
[20]. 

The apparent variation in the mass of moving 
bodies has also been explained by quantum 
electrodynamics (QED), which posits that the 
increase in the effective mass of an electron is a 
consequence of the dressing or renormalizing of the 
electron as it interacts with the virtual photons in 
the environment characterized by the quantum 
electrodynamical vacuum. The renormalization is 
introduced as a result of a moving electron being 
considered to be a mathematical point [23,24] that 
produces an electromagnetic field around itself 
which in turn acts back upon the electron resulting 
in an increase in }M. However, }M becomes 
infinite as a consequence of the electron being 
considered to be a mass without extension. The 
infinite mass term is neutralized by using a 
renormalization procedure based on a perturbation 
expansion involving powers of the fine structure 
constant [25], a measure of the interaction between 
a charged particle and a photon. However, the fact 
that the electron has an anomalous magnetic 
moment [26] indicates that the electron may not be 
a mathematical point and thus “the electron may 
have size and structure!” Currently, quantum 
chromodynamics (QCD), which is known as the 
Standard Model of Physics, considers only 
mathematical point particles and fields, and it 
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posits that it is the Higgs field that composes the 
environment through which the massless 
particles move, gives mass (}M) to the 
elementary particles that would be massless in its
absence [27,28]. 

If the electron does have a size and a structure, 
perhaps the expansion terms involving 
the fine structure constant are related to the 
physical size and structure of an electron itself. The 
movement of a charged particle will pro
magnetic field (�5�, in Tesla where T = Wb/m
can be characterized by magnetic flux lines (
Webers where Wb = Vs) or a magn
potential (��, in Vs/m). Since a retarded magnetic 
vector potential would interact first with those parts 
of an extended charged body that are nearer and 
would interact later with those parts that are farth
knowledge of the size and structure of a charged 
particle would make it possible to quantitatively 
derive the retarded magnetic vector potential.

2.2.     The relationship between the 
optomechanical Doppler force and the magnetic 

vector potential 

Michael Faraday [29] considered that the “
lines of magnetic force [may] correspond (in 
having a real existence) to the rays of light
Faraday's conjecture be valid, then the 
optomechanical Doppler force, which is a 
manifestation of the spatially asymmetrical 
interaction between charged particles and photons, 
the carriers of the electromagnetic force, may be 
related to the spatial density of magnetic flux lines. 

The spatial density of the magnetic flux lines (

is related to the magnetic induction [30
is also known as the magnetic induction field [37]
or the magnetic flux density [38], or the m
field (�5�) [39-46]), and the curl of the magnetic 
vector potential: 
 H�dH�� =	�5� = 	�5� 	×	��                      
 
Where, �� is any plane through which the m
flux lines produced by the moving charge
through. The plane is established by 
vector and any radial vector. The magnetic v
potential is easier to work with than the magnetic 
flux lines or the magnetic field since the magnetic 
vector potential, which is orthogonal to the 
magnetic field lines, is approximately 
the trajectory of the moving charge a
approximation by one-dimensional equations. 

:0042                                                                                                                      

composes the 
the massless point 

the point-like 
elementary particles that would be massless in its 

If the electron does have a size and a structure, 
perhaps the expansion terms involving powers of 
the fine structure constant are related to the 
physical size and structure of an electron itself. The 
movement of a charged particle will produce a 

, in Tesla where T = Wb/m2) that 
magnetic flux lines (�g, in 

) or a magnetic vector 
). Since a retarded magnetic 

ith those parts 
harged body that are nearer and 

those parts that are farther, 
knowledge of the size and structure of a charged 
particle would make it possible to quantitatively 
derive the retarded magnetic vector potential. 

The relationship between the 
optomechanical Doppler force and the magnetic 

considered that the “physical 
lines of magnetic force [may] correspond (in 
having a real existence) to the rays of light.” If 
Faraday's conjecture be valid, then the 
optomechanical Doppler force, which is a 

ly asymmetrical 
interaction between charged particles and photons, 
the carriers of the electromagnetic force, may be 
related to the spatial density of magnetic flux lines. 

The spatial density of the magnetic flux lines (
H�dH�� ) 

[30-36], (which 
gnetic induction field [37], 

, or the magnetic 
), and the curl of the magnetic 

                      (16) 

the magnetic 
flux lines produced by the moving charge pass 

 the velocity 
The magnetic vector 

ork with than the magnetic 
lines or the magnetic field since the magnetic 

, which is orthogonal to the 
approximately parallel to 

allowing the 
equations. The 

magnetic vector potential at a given point in space 
and time is defined as: 
 �� = 	�b6�-�W � �5�,%	                         
 
Where, �� is the velocity of an extended charged 
body and �′ is the distance between a point on an 
extended charged body where �� is determined 
given time and another point on the
moving charge which served as the source of 
previous point in time consistent with the 
order Doppler effect. When the magnetic flux lines 
in a given region of space are close 
magnetic field and the magnetic vector potential in 
that space are large and when the magnetic flux 
lines are widely separated, the magnetic field and 
the magnetic vector potential in that space are 
small.  

The magnetic induction force exerte
charge moving through a coil, as measured by the 
magnitude and duration of deflection of a 
galvanometer needle, is greater than
exerted by a static or frictional charge on a 
capacitor measured with a Coulomb torsion 
balance electrometer. The ratio of electromagnetic 
and the electrostatic units of charge, as measured 
through their ponderomotive action by Wilhelm 
Weber and Rudolf Kohlrausch was equal to a 
constant, c, which was then known as the ratio of 
the units and is now known as the spee
[30,47-50]. Since electromagnetic properties are 
propagated from a moving charged body at the 
speed of light [30,51,52], the magnetic flux lines 
produced by a moving charged object will, by 
necessity, be Doppler shifted (Fig. 2).

Fig.2: The density of a portion of the magnetic flux lines 
around a current-carrying wire that is perpendicular to 
the paper. The density of magnetic flux lines in front of 
the wire increases as the wire accelerat
as a wire decelerates. The density of magnetic flux
behind the wire decreases as the wire accelerat
increases as the wire decelerates.  
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at a given point in space 

                          (17) 

of an extended charged 
between a point on an 

is determined at a 
nother point on the extended  

which served as the source of �� at a 
consistent with the second 

. When the magnetic flux lines 
in a given region of space are close together, the 
magnetic field and the magnetic vector potential in 
that space are large and when the magnetic flux 
lines are widely separated, the magnetic field and 
the magnetic vector potential in that space are 

The magnetic induction force exerted by a 
charge moving through a coil, as measured by the 
magnitude and duration of deflection of a 

ter needle, is greater than the force 
exerted by a static or frictional charge on a 
capacitor measured with a Coulomb torsion 

he ratio of electromagnetic 
and the electrostatic units of charge, as measured 
through their ponderomotive action by Wilhelm 
Weber and Rudolf Kohlrausch was equal to a 
constant, c, which was then known as the ratio of 
the units and is now known as the speed of light 

. Since electromagnetic properties are 
propagated from a moving charged body at the 

, the magnetic flux lines 
produced by a moving charged object will, by 
necessity, be Doppler shifted (Fig. 2). 

 
magnetic flux lines 

that is perpendicular to 
The density of magnetic flux lines in front of 

wire accelerates and decreases 
y of magnetic flux lines 

wire accelerates and 
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Moreover, in a charged body moving at 
constant velocity, the spatial density of the 
magnetic flux lines will be greater at the front and 
lesser at the back of a moving charged particle 
(Fig. 3). The angular-dependence of the spatial 
frequency of magnetic flux lines can be obtained 
from the relativistic dispersion relation: 
 .'/*-,�-,		 =	.*'+,�-		 ��		�� ������	�	�� � !���

Fig.3: An illustration of the magnetic flux lines produced 
by a charged particle moving towards the bottom right 
corner. The magnetic flux lines are drawn 
the magnetic flux lines propagate through the vacuum at 
the vacuum speed of light and that the distance between 
the magnetic flux lines are Doppler shifted according to 
Eqn. (18). The sense of rotation of the lines depends on 
the sign of the charge of the moving particle.
 

Because the relativistic Doppler effect is second 
order with respect to velocity, the average angular 
wave number (.�'/*-,�-,) of the magnet
produced in front of and behind the center of a 
moving particle is velocity dependent and does not 
become velocity independent as it would if the 
Doppler effect were only first order with respect to 
velocity [53]. The average angular wave number 
(.�'/*-,�-,) of magnetic flux lines produced by a 
moving charged particle is: 
 

.�'/*-,�-,		 =	 �� .*'+,�-		 � ��		����	–	����
+ ��		����	–	����

  

 
Where, .*'+,�-		is the angular wave number of 
magnetic flux lines produced by a vibrating 
charged particle at rest. The arrival time of the 
average Doppler-shifted magnetic flux lines to a 
point in space is equivalent to the retarded time
the magnetic vector potential. As long as the 

:0042                                                                                                                      

Moreover, in a charged body moving at 
constant velocity, the spatial density of the 
magnetic flux lines will be greater at the front and 

er at the back of a moving charged particle 
dependence of the spatial 

frequency of magnetic flux lines can be obtained 
ativistic dispersion relation:  

��"           (18) 

 
An illustration of the magnetic flux lines produced 

by a charged particle moving towards the bottom right 
corner. The magnetic flux lines are drawn assuming that 
the magnetic flux lines propagate through the vacuum at 
the vacuum speed of light and that the distance between 
the magnetic flux lines are Doppler shifted according to 

. The sense of rotation of the lines depends on 
f the moving particle. 

Because the relativistic Doppler effect is second 
order with respect to velocity, the average angular 

of the magnetic flux lines 
behind the center of a 

is velocity dependent and does not 
become velocity independent as it would if the 
Doppler effect were only first order with respect to 

. The average angular wave number 
of magnetic flux lines produced by a 

��
� = 	 486=:�9		��	�	����

 (19) 

is the angular wave number of 
magnetic flux lines produced by a vibrating 

The arrival time of the 
shifted magnetic flux lines to a 

point in space is equivalent to the retarded time of 
. As long as the 

moving charged particle has extension, it will also 
experience an increase in the density of magnetic 
flux lines and an increase in the magnetic vector 
potential in a velocity-dependent manner (Fig. 4). 

Fig.4: Diagram of the average number of magnetic flux 
lines produced by an extended charged particle moving 
at a given velocity. The faster the extended charged 
particle moves, the greater the number of magnetic flux 
lines produced and the greater the number of magnetic 
field lines experienced by the extended charged particle. 
The greater the number of magnetic flux lines, the 
greater the magnetic field and the greater
vector potential. 
 

Since movement of a charged particle results in 
a change in the temporal derivative of the magnetic 
flux lines, an extended moving charged particle 
produces and experiences a velocity
electromotive force (�, in V). Since the functional 
form of the velocity dependence of the angular 
wave number and the magnetic flux lines are the 
same, the electromotive force is given by: 
 � = 	 H�d

H
��	�	����
                            

 
or more simply: 
 � = 	 H��dH
                          

 
Where, ��g represents the average number of 
magnetic flux lines produced and experienced by
an extended charged particle—the details of which 
depend on the size and structure of the 
particle. Such a velocity-dependent electromotive 
force produced and experienced along the length of 
an extended moving charged particle will reduce 
the effectiveness of the electrostatic field applied to 
accelerate the charged particle. Moreover, 
that the average number of magnetic flux lines per 
unit time crossed by a moving piece of wire 
increases with the velocity of the wire, makes the 
production of a motional electromotive force (
intelligible in terms of Faraday's Law. Taking the 
temporal derivative of Eqn. (16), we get:
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particle moves, the greater the number of magnetic flux 
lines produced and the greater the number of magnetic 
field lines experienced by the extended charged particle. 
The greater the number of magnetic flux lines, the 

he magnetic field and the greater the magnetic 

Since movement of a charged particle results in 
a change in the temporal derivative of the magnetic 
flux lines, an extended moving charged particle 
produces and experiences a velocity-dependent 

, in V). Since the functional 
form of the velocity dependence of the angular 
wave number and the magnetic flux lines are the 
same, the electromotive force is given by:  

                            (20) 

                                (21) 

represents the average number of 
magnetic flux lines produced and experienced by 

he details of which 
depend on the size and structure of the charged 

dependent electromotive 
force produced and experienced along the length of 
an extended moving charged particle will reduce 
the effectiveness of the electrostatic field applied to 
accelerate the charged particle. Moreover, the fact 
that the average number of magnetic flux lines per 
unit time crossed by a moving piece of wire 
increases with the velocity of the wire, makes the 

ectromotive force (�) 
intelligible in terms of Faraday's Law. Taking the 

, we get: 
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H�dH��	H
 =	 Hg5�H
 = 	�5� 	×	H��H
                   (22) 

 
The vector form of Faraday’s Law states that: 
 �5� 	× 	I5� = 	− Hg5�H
                         (23) 

 
and since 
 − H�dH��	H
 =	− Hg5�H
 =	−�5� 	× 	H��H
              (24) 

 
then, after integration and within a constant of 
integration, 
 I5� = 	− H��H
                              (25) 

 
and after multiplying both sides by the charge �� of 
the extended moving particle, we get: 
 D�0PH+�-H = ��I5� = 	−�� H��H
                 (26) 

 
Where, ��I5� is an electrodynamic reaction force or 
induced force (D�0PH+�-H) produced by an extended 
moving charged particle. Equating the 
electromagnetic reaction force or self-force to the 
optomechanical Doppler force, we see that the 
optomechanical Doppler force is equivalent to the 
negative of the product of the charge of the particle 
(��) and the time rate of change of the magnetic 

vector potential (
H��H
 ): 

 D�K'FFG-, =	−�� H��H
                        (27) 

 
Assuming that the above relationship be true, 

then the velocity and temperature dependence of 
the temporal derivative of the magnetic vector 
potential would be given by the following equation: 
 H��H
 = 	 *��- T� 	��

��	�	����
                       (28) 

 
and the magnetic vector potential at a constant 
temperature would be given by:  
 �� = 	 *��- 	T� � 	��

��	�	����
	XY                  (29) 

 
which indicates that the magnetic vector potential 
would vanish at absolute zero and there would be 
no self-inductance resisting the flow of charges. 

 

Eqn. (27) shows that the product of the charge 
of an extended moving particle and the temporal 
derivative of the magnetic vector potential 
quantifies an induced electrodynamic force that 
resists the movement of an extended charged 
particle. To Maxwell, who took the dynamics in 
electrodynamics seriously [30,54,55], the magnetic 
vector potential was a quantity that represented 
“ the fundamental quantity in the theory of 
electromagnetism.” J. J. Thomson [56] also 
considered the magnetic vector potential to 
represent “the momentum due to the magnetic 
force” and that it “represents a most important 
physical property of the system” However, 
subsequently, the magnetic vector potential lost 
favor. To Oliver Heaviside [57], the “very artificial 
nature”' of the magnetic vector potential “obscures 
and complicates many investigations” and he “went 
to the root of the evil, and cured it,” by rewriting 
Maxwell's equations without the gauge-dependent 
vector potential. Since Heaviside's time, the 
magnetic vector potential has been considered to be 
merely a mathematical device used to help in 
calculations but had no physical meaning or reality 
of itself. Heinrich Hertz [58] saw the magnetic 
vector potential as “magnitudes which serve for 
calculation only.” According to Andrew Gray [31], 
“The use of the vector-potential is sometimes 
convenient as an analytical expedient. But it is not 
a physical quantity which can be observed 
experimentally....” 

An understanding of the quantitative 
relationship between the magnetic vector potential 
and the optomechanical Doppler force may help 
provide constraints for the size and structure of a 
charged particle and an understanding of the 
relationship between its momentum and apparent 
momentum. In terms of the movement of charged 
particles, the optomechanical Doppler force 
treatment and electromagnetic treatment are 
incomplete yet complementary treatments. In the 
optomechanical Doppler force treatment, the radius 
of the charged particle is an outsider, while in the 
electromagnetic treatment; the radius of the photon 
is an outsider. Fig. 5 shows the Doppler-shifted 
magnetic flux lines produced by a single indivisible 
moving charge which suggests that a polarity or 
spatial asymmetry must be introduced into the 
model. The bipolarity or spatial asymmetry can be 
introduced in the field and/or in the charged 
particle itself. In the next section I will discuss the 
experiments that led Maxwell [30] to state that the 
magnetic vector potential was a quantity that 
represented “the fundamental quantity in the theory 
of electromagnetism”.  
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Fig.5: An illustration of how the magnetic flux lines 
produced by a charged particle moving towards the 
bottom right corner can be modeled as an extended and 
bipolar electron. If this illustration represented a stati
image of an ``induced'' electron captured in an instant of 
time, the flux lines would indicate that the front of t
electron was paramagnetic (µ >	μ') and a good conductor 
while the back of the electron was diamagnetic (
and a poor conductor. The magnetic flux lines may 
differentially act back upon the front and back of the 
bipolar particle causing an additional shape change. A 
spinning electron would also produce magnetic flux lin
parallel to the axis of spin. 
 

2.3.     Faraday's electro-tonic state

Knowing that static electricity induced a 
redistribution of the charges in a nearby object 
[59], Michael Faraday [60] wondered if a current of 
moving charges in one stationary wire coil could 
likewise induce a current of moving charges in 
another stationary wire coil. Faraday found that it 
could, but only when the primary current increased 
or decreased. An increase in the primary current 
produced a secondary current whose direction was 
contrary to the circulation of the primary current 
while a decrease in the primary current produced a 
secondary current that flowed with the same sense 
as the primary current. Faraday also found that the 
inductive effect disappeared when the primary 
current in the stationary wire was steady although a 
steady primary current could induce a secondary 
current when the two wires were moved relative to 
each other. The direction of the induced current 
was contrary to the direction of the primary current 
when the two wire coils approached each other, and 
it had the same sense as the primary current when 
the two wire coils receded from each other. 
Faraday called the production of an induc
current, volta-electric induction. Soon Faraday 
discovered that a moving magnet could also induce 
a current in a wire coil when it was introduced into 
or withdrawn from the loop and that the direction 
of the current depended on the N-S orientation of 
the magnet being introduced or withdrawn. Due to 
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a current in a wire coil when it was introduced into 
or withdrawn from the loop and that the direction 

S orientation of 
e magnet being introduced or withdrawn. Due to 

the “similarity of action, almost amounting to 
identity,” between temporal and spatial variations 
in the primary electric currents and movements of 
common magnet, Faraday called the production of 
an induced current by a magnet, magneto
induction. The production of a secondary current 
by a variation of either a primary current or 
magnetic field, which was independently 
demonstrated by Joseph Henry [61,62]
known as electromagnetic induction.

Faraday [63] could visualize the magnetic flux 
lines with iron filings, and he concluded that 
electromagnetic induction occurs when a wire 
experiences either an increase or a decrease in the 
number of magnetic flux lines as a result of a 
variation in the current in the primary wire, or as a 
result of the relative motion between the two wires 
or between a magnet and a wire. Each of these 
causes can be seen as changing the number of 
magnetic flux lines experienced by the secondary 
wire. Heinrich Lenz [64-66] proposed a generalized 
rule for determining the direction of the current 
induced in a wire that was independent of the 
method of induction. According to Lenz's Law, the 
induced current flowed in a direction such that the 
magnetic flux lines produced by the sec
current opposed the change in the magnetic flux 
lines that induced the secondary current. Lenz's 
Law described a governing effect in terms of 
neutralizing the magnetic flux lines. 

Franz Neumann [66] combined Faraday's and 
Lenz's observations on induction into one 
mathematical equation that is known as Faraday's 
Law of Induction. Newman wrote, “
of Lenz: the action which the inducing current, or 
magnet, exercises upon the induced conductor, if 
the induction results from the movement of th
latter, is always in the nature of a check on its 
motion.” James Clerk Maxwell also saw Lenz's 
Law as describing a neutralizing mechanical effect
According to Maxwell [30], “the direction of the 
secondary current is such that the mechanical 
action between the two conductors is opposite to 
the direction of motion, being a repulsion when the 
wires are approaching, and an att
they are receding.” 

Faraday [67] considered that “
electric current excited in bodies moving relatively 
to magnets, is made dependent on the intersection 
of the magnetic curves by the metal.
say “….I cannot resist the impression that there is 
some connected and correspondent effect produced 
by this lateral action of the elements on the electric 
stream.... An action of this kind, in fact, is evident 
in the magnetic relations of the parts of the current. 
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But admitting...the magnetic forces to constitute the 
power which produces such striking and different 
results at the commencement and termination of a 
current, still there appears to be a link in the chain 
of effects, a wheel in the physical mechanism of the 
action, as yet unrecognized. If we endeavour to 
consider electricity and magnetism as the results of 
two forces of...a peculiar condition of matter, 
exerted in determinate directions perpendicular to 
each other, then it appears to me, that we must 
consider these two states or forces as convertible 
into each other in a greater or smaller degree; i.e., 
that an element of an electric current has not a 
determinate electric force and a determinate 
magnetic force constantly existing in the same 
ratio, but that the two forces are...convertible by a 
process...at present unknown to us [68].” 

Faraday [60] observed that induction exposes 
something novel and wrote “whilst the wire is 
subject to either volta-electric or magneto-electric 
induction, it appears to be in a peculiar state; for it 
resists the formation of an electrical current in 
it....I have...ventured to designate it as the electro-
tonic state.” Faraday [60] went on to say that “The 
current of electricity which induces the electro-
tonic state in a neighbouring wire, probably 
induces that state also in its own wire....” That is, 
Faraday postulated the simultaneous existence of 
the conducting and electro-tonic state, or self-
induction. Maxwell [69] called the electro-tonic 
state, “the fundamental quantity in the theory of 
electromagnetism.” In concluding a paper entitled, 
On Faraday's Lines of Force, Maxwell [70] wrote 
“By a careful study of the laws of elastic solids and 
of the motions of viscous fluids, I hope to discover 
a method of forming a mechanical conception of 
this electro-tonic state adapted to general 
reasoning.” In a following paper, Maxwell [71] 
“stated the mathematical relations between this 
electrotonic state and the lines of magnetic 
force...and also between the electrotonic state and 
electromotive force.” 

Maxwell [30] took dimensional analysis 
seriously in exploring the relationships between 
seemingly unrelated quantities and introduced the 
equivalent terms: electromagnetic momentum and 
electrokinetic momentum to describe Faraday's 
electro-tonic state. Maxwell [71] wrote “It 
appears...that if we admit that the unresisted part 
of electromotive force goes on as long as it acts, 
generating a self-resistant state of the current, 
which we may call (from mechanical analogy) its 
electromagnetic momentum...then induction of 
currents...may be proved by mechanical reasoning. 
What I have called the electromagnetic momentum 

is the same quantity which is called by Faraday the 
electrotonic state of the circuit, every change of 
which involves the action of an electromotive force, 
just as a change of momentum involves the action 
of a mechanical force.” In order to characterize 
Faraday's electro-tonic state, Maxwell gave it a 
number of designations, including the electrotonic 
state (without a hyphen), the electromagnetic 
momentum, and electrokinetic momentum. This 
emphasized the relationship between the electro-
tonic state and momentum. Maxwell also used the 
magnetic vector potential to characterize the 
Faraday's lines of force (“magnetic flux lines”) 
produced by a moving charge. According to 
Maxwell [30], “The conception which Faraday had 
of the continuity of the lines of force precludes the 
possibility of their suddenly starting into existence 
in a place where there were none before. If, 
therefore, the number of lines which pass through a 
conducting circuit is made to vary, it can only be 
by the circuit moving across the lines of force, or 
else by the lines of force moving across the circuit. 
In either case a current is generated in the circuit. 
The number of the lines of force which at any 
instant pass through the circuit is mathematically 
equivalent to Faraday's earlier conception of the 
electrotonic state of that circuit...The total 
electromotic force acting around a circuit at any 
instant is measured by the rate of decrease of the 
number of lines of magnetic force which pass 
through it.” 

2.4. The magnetic vector potential 

Maxwell [30] related the magnetic vector potential 
to the magnetic field: 
 �5� = 	�5� 	× 	��                            (30) 
 

According to Maxwell [30], the time rate of 
change of the magnetic vector potential represented 
the electromotive intensity (V/m = N/C) that a 
charged particle placed at the point x, y, z would 
experience if the primary current were suddenly 
stopped. It follows that the product of �� and the 
time rate of change of the magnetic vector potential 
represents a force that a charged particle placed at 
the point x, y, z would experience if the primary 
current were suddenly stopped. This induced force 
(D�0PH+�-H) is antiparallel to the flow of current and 
is thus a reaction force or counter force and an 
electrodynamic way of describing the 
optomechanical Doppler force. The magnetic 
vector potential can be interpreted to act directly on 
an extended moving charge that generates it in such 
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a way that it reduces the forward velocity of the 
charge. The counterforce and the time rate of 
change of electrokinetic mome
(z�-G-�
,'40P-
0�) caused by the magnetic vector 
potential is given by the product of the charge of 
the extended moving object and the electromotive 
intensity, which is the temporal derivative of the 
magnetic vector potential: 
 D�0PH+�-H = 	 HF�9�9��:6���9���H
 =	−��
 

The equation of motion for a particle whose 
velocity is governed by an induced force 
characterized by the magnetic vector potential is 
given by:  
 D�EFFG0-H = 	M' H�5�H
 + �� H��H
                 
 
Which reduces to Newton's Second Law when the 
magnetic vector potential or its time rate of change 
vanish. The time rate of change of the apparent 

momentum (
HF�%H
 ) is given by: 

 

D�EFFG0-H =	X|z� 	+ 	z�-G-�
,'40P-
0�XY
 																																= 	 HN�6�5�	�	�-��OH
 =	 HF�%H
      

 
Note that ���� is also incorporated into the 
canonical momentum used in the Schrö
equation for charged particles. Substituting −D�0PH+�-H for �� H��H
 , we get: 

 D�-LL-�
0�- = 	D�EFFG0-H +	D�0PH+�-H = 	
 
Where, D�-LL-�
0�- is the effective force that results 
in the acceleration of a charged particle.

During the acceleration of a particle, the applied 
force is dissipated by electromagnetic friction, 
which can be modeled in terms of the te
and velocity-dependent optomechanical Do
force (D�K'FFG-,) or the analogous induced 

electrodynamic force (D�0PH+�-H) given by the 
negative of the product of the charge and the time 
rate of change of the magnetic vector potenti
(Fig. 6). 

As a result of the unavoidable production of the 
optomechanical or electromagnetic friction by a 
moving particle, the speed of the particle does not 
increase linearly with applied potential energy (
because a portion of the energy is used to create the
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             (33) 
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a portion of the energy is used to create the 

 
Fig.6: An illustration of the relative directions of the 
vectors that represent the current (��), the velocity (
magnetic vector potential (��), the ap
(D�EFFG0-H), the induced force (D�0PH+�-H
optomechanical Doppler force (D�K'FFG-,
charged and negatively charged particle moving in an 
electric field (I5�). 
 
magnetic vector potential. Assuming that the 
potential energy is not transformed into the 
momentum of a particle but into

momentum, then �I = 	 F�%���6. As a consequence of 

the creation of the magnetic vector potential, the 
potential energy needed to accelerate a pa
constant mass (M') from rest to velocity (
given by: 
 �I = 	 F�%���6 = 

N�6�5�	�	�-���6
 

                            = 	 ��M'��� + �����
 

Letting the kinetic energy (wI
be equal to 

��M'���, we see that only a portion of 

the potential energy is transformed into kinetic 
energy. The remainder is dissipated or transformed 
into a frictional loss described by first and second 
order terms that depend on the charge and the 
magnetic vector potential. 
 �I = wI + ������ +	 N�-��
 

According to the hypothesis that the 
optomechanical Doppler force and the product of 
the charge and the time rate of change of the 
magnetic vector potential are two equivalent ways 
of describing the same thing, at low velocities 
and/or low temperatures, where the magnetic 
vector potential becomes negligible, the magnitude 
of the energy necessary to accelerate a particle with 
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According to the hypothesis that the 
Doppler force and the product of 

the charge and the time rate of change of the 
magnetic vector potential are two equivalent ways 
of describing the same thing, at low velocities 
and/or low temperatures, where the magnetic 

e, the magnitude 
of the energy necessary to accelerate a particle with 
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constant mass to speed � approaches the classical 

value of  
��M'���. By equating the product of the 

charge and the time rate of change of the magnetic 
vector potential to the optomechanical Doppler 
force, we get an absolute zero of the magnetic 
vector potential at the absolute zero of temperature. 
This allows one to establish a gauge for the 
magnetic vector potential and to quantify the 
efficiency of energy transformations that involv
electricity and magnetism [72].  

The magnetic vector potential does not 
propagate instantaneously but serves as a means to 
describe the time-delayed influence of a moving 
particle on the surrounding field and the subsequent 
time-delayed influence of the surrounding field on 
the moving particle. The magnetic (�5�) and electric 
(I5�, in V/m) fields that make up the emitted 
radiation are related to the magnetic vector 
potential through the following relations:
 �5� = 	�5� 	× 	��                           
 
and 
 I5� = 	−�5�� −	����
                         
 
Where, � represents the scalar electrostatic 
potential (in V).  

During the acceleration of a charged particle, 
the energy partitioned into the magnetic vec

potential (������ +	 N�-��O���6 ) is unavailable to 

accelerate the particle and the frictional loss is 
emitted as Doppler-shifted electromagnetic 
radiation, an example of which is synchrotron 
radiation. One could test the equivalence of the 
induced electrodynamic force characterized
magnetic vector potential and the temperature
dependent optomechanical Doppler force by 
checking the temperature dependence of 
synchrotron radiation. If the equivalence holds, the 
synchrochron radiation generated at 300 K should 
be ten thousand times greater than at 3 K. 

2.5.     Aharonov-Bohm effect

Apparently Heaviside [57] did not completely 
“murder” the “artificial ” and “useless
vector potential after he reformulated Maxwell's 
equations exclusively using fields [73]. Eventuall
Ehrenberg and Siday [74] and Aharonov and Bohm 
[75] independently questioned the post-
idea that the magnetic vector potential was artificial 
and useless and devised an experiment that could 
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magnetic vector potential and the temperature-
dependent optomechanical Doppler force by 
checking the temperature dependence of 
synchrotron radiation. If the equivalence holds, the 
synchrochron radiation generated at 300 K should 

eater than at 3 K.  

Bohm effect 

Apparently Heaviside [57] did not completely 
useless” magnetic 

vector potential after he reformulated Maxwell's 
. Eventually, 

ov and Bohm 
-Maxwellian 

idea that the magnetic vector potential was artificial 
and useless and devised an experiment that could 

test its significance. They devised an electron 
interferometer that could spatially separate the 
magnetic vector potential from the magnetic field 
and thus test the influence of the magnetic vector 
potential on the electrodynamics of moving bodies 
without complications introduced by the magnetic 
field. This can be accomplished with a solenoid, 
which produces a magnetic field that is uniform 
and concentrated within the solenoid but weak and 
divergent outside of the solenoid [76,77]
other hand, the magnetic vector potential produced 
by a solenoid extends outside of the solenoid, 
falling off with the inverse of the distance. The 
magnetic vector potential influences the apparent 
momentum of an electron when it is self
(��-) as described above; or, when it is produ
a solenoid (��*). In the electron interferometer, the 
phase of an electron is influenced by the magnetic 
vector potential produced by the solenoid, 
according to the following formula: 
 ���- = 	ħ�5�#                           
 
Where, # is the local space-time dependent phase 
of a quantum mechanical wave, and 
which is the angular wave vector. 
 

Fig.7: Diagram of an electron interferometer used to 
demonstrate the Aharonov-Bohm effect. A solenoid is 
used to generate a magnetic vector potential and a 
magnetic field. The magnetic field is concentrated into a 
uniform magnetic field within the solenoid while the 
magnetic field is weak and divergent outside the 
solenoid. On the other hand, the magnetic vector 
potential extends outside of the solenoid, falling off with 
distance. The magnetic vector potential has the same 
sense as the current used to create the magnetic field and 
the magnetic vector potential. If the current is clockwis
the magnetic flux lines point into the paper and the 
magnetic vector potential is clockwise. If the current is 
counterclockwise (as shown), the magnetic flux lines 
point away from the paper, and the magnetic vector 
potential circulates counterclockwise. 
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Indeed, when an iron whisker was placed 
between the two paths of an electron 
interferometer, originally made out of a modified 
Phillips EM100 electron microscope [78], such that 
the magnetic vector potential was parallel to one 
electron path and antiparallel to the other, the 
magnetic vector potential changed the interference 
pattern. Subsequent experiments by Möllenstedt 
and Bayh [79] using a solenoid (Fig. 7) 
demonstrated the predicted shift in the interference 
pattern confirming that the magnetic vector 
potential had a real meaning and a physical 
existence [80-83]. However, skeptics of the reality 
of the magnetic vector potential interpreted the 
results of the Aharonov-Bohm experiment in terms 
of a nonlocal interaction between the magnetic 
field and the electrons [84-87]. 

According to the optomechanical Doppler force 
interpretation of the magnetic vector potential, we 
do not have to choose between a mysterious 
potential that is local but cannot exert a real 
physical force and a real physical field that exerts a 
physical force but is nonlocal. Interpreting the 
Aharonov-Bohm effect using the optomechanical 
Doppler force, I find a change in the apparent 
momentum of the electrons resulting from the 
decelerating and accelerating forces caused by the 
magnetic vector potential produced by the solenoid. 
In one path, in which the magnetic vector potential 
produced by the solenoid is parallel to the self-
induced magnetic vector potential, the magnetic 
vector potential produced by the solenoid adds to 
the apparent momentum of the electron. In the 
other path, the magnetic vector potential produced 
by the solenoid is antiparallel to the self-induced 
magnetic vector potential and subtracts from the 
apparent momentum of the electron. 
 

Path 1:     
F�����:9���6 = 	�� + �-��9�6 	+ �-��8�6        (40) 

 

Path 2:     
F�����:9���6 = 	�� + �-��9�6 − �-��8�6         (41) 

 
The interference between two electron beams in 

an interferometer depends on the difference in the 
speed of the two beams and as the magnetic vector 
potential is increased, the interference fringe moves 

left or right in proportion to (
��-��8�6 ). By analogy 

with the optomechanical Doppler force, I predict 
that the magnetic vector potential produced by the 
solenoid will be temperature dependent, and it, 
along with the shift in the interference bands will 
vanish at absolute zero, where the magnetic vector 
potential vanishes along with the photon density. 

3.     Conclusions 

In his study of induction, Faraday described a state 
of tension, which he called the electro-tonic state. 
Maxwell saw the electrotonic state as an 
electrokinetic momentum that could be described 
mathematically by the time rate of change of the 
magnetic vector potential. I have drawn an analogy 
between the product of the charge of an extended 
moving body and the time rate of change of the 
magnetic vector potential, and the optomechanical 
Doppler force, which is a contact force that 
characterizes the interaction between a charged 
particle and its environment consisting of a photon 
gas composed of the carriers of the electromagnetic 
force. Using this analogy, I have shown that the 
time rate of change of the magnetic vector potential 
characterizes the work done on a moving extended 
charged particle to resist its motion in an 
electrostatic field. By clarifying the relationship 
between the magnetic vector potential and its 
ability to do work on a charged particle, I have 
shown that magnetism is not just “a relativistic 
aspect of electricity'' [42] but is necessary to 
understand the electrodynamics of moving bodies 
in real and absolute time. Moreover, according to 
the optomechanical Doppler effect interpretation of 
the magnetic vector potential, the Aharonov-Bohm 
effect is not a mysterious quantum effect, but may 
be a consequence of the change in the apparent 
momentum of the electrons that results from the 
local action of the magnetic vector potential 
produced by the solenoid. 

While the magnetic vector potential came out of 
classical obscurity and gained some status in 
explaining the Aharonov-Bohm effect, its 
importance skyrocketed in terms of local gauge 
invariance [88]. Perhaps the optomechanical 
Doppler force analogy will help relate the magnetic 
vector potential to the canonical momentum used in 
quantum mechanics and to other quantum effects 
such as superconductivity. 
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